Campylobacter detection along the food chain – towards improved quantitative risk analysis by live/dead discriminatory culture-independent methods

Kerstin Stingl, Christiane Buhler, Nora-Johanna Krüger

Summary

Death, although absolute in its consequence, is not measurable by an absolute parameter in bacteria. Viability assays address different aspects of life, e.g. the capability to form a colony on an agar plate (CFU), metabolic properties or membrane integrity. For food safety, presence of infectious potential is the relevant criterion for risk assessment, currently only partly reflected by the quantification of CFU. It will be necessary for future improved risk assessment, in particular when fastidious bacterial pathogens are implicated, to enhance the informative value of CFU. This might be feasible by quantification of the number of intact and potentially infectious Campylobacter, impermeable to the DNA intercalating dye propidium monoazide (PMA). The latter are quantifiable by the combination of PMA with real-time PCR, although thorough controls have to be developed for standardization and the circumvention of pitfalls. Under consideration of different physiological states of the food-borne pathogen, we provide an overview of current and future suitable detection/quantification targets along the food chain, including putative limitations of detection.

Keywords: real-time PCR, metabolic state, detection methods, bacterial death, PMA, EMA

Zusammenfassung

Schlüsselwörter: Real-time PCR, metabolischer Zustand, Detektionsmethoden, bakterieller Tod, PMA, EMA
Introduction

The microaerobic fastidious bacterial pathogen *Campylobacter* is the most frequent cause of food-borne infections in Europe (EFSA and ECDC, 2014). Due to this high frequency of infection and the underestimated infection-triggered autoimmune sequelae, the bacterium causes the highest DALYs (disability-adjusted life years) of all food-borne pathogens according to a recent presentation of the European Centre for Disease Prevention and Control (ECDC, European Commission, May 2014, unpublished). *Campylobacter* spp. are apparently successful in spreading across the world within different hosts (avian, mammalian, molluscs). In particular, *Campylobacter*-contaminated broiler carcasses comprised over 70% of the total examined carcasses, compared with a *Salmonella* Enteritidis or *S. Typhimurium* prevalence of 3.6% at community level (EFSA, 2010a). While the prevalence of *Salmonella* is decreasing owing to the control measures taken, *Campylobacter* remains a very important food-borne pathogen for which control strategies are still largely missing.

Upon exit of the intestine, the natural niche of multiplication, the bacterium rapidly loses its capacity to grow in vitro. This stress-sensitive nature of *Campylobacter* complicates the detection of the bacterium by culture-based methods. What are the most appropriate detection methods throughout the food chain? How can we use real-time PCR methods for the amelioration of quantitative detection? And most important, how to define *Campylobacter* death as negation of infectivity in order to improve quantitative risk assessment for food control?

Definition of bacterial death

For food authorities, a viable bacterium forms a colony on a nutrient agar plate. Since decades microbiologists are aware of the “great plate count anomaly” (Amann et al., 1995). Only a fraction of microbial life can be cultivated and cultivation efficiency depends on cultivation conditions and the physiological state of the target bacterium. Thus, it becomes more and more obvious that the infectious risk of fastidious bacteria can be underestimated and that for intracellular bacteria or viruses the parameter CFU is unsuitable. It is a common, but far from an absolute principle, that the more stress a bacterium is exposed to, the more likely it loses its infectious potential. The ability of pathogens to reappear after stress exposure and transient loss of cell functions and loss of membrane integrity (Nebe-von-Caron et al., 2000). Detection methods quantifying the number of viable bacteria target these different aspects/stages of life: (i), the capability of a single cell to multiply in vitro corresponds to the number of CFU under conditions quite distinct from those in vivo (ISO 10272-2, 2006); (ii), the amount of RNA per cell measures the magnitude of current transcription/translation, which varies depending on the growth phase of the bacterium (Schaechter et al., 1958); (iii), the metabolic state of a bacterium, which is reflected by the magnitude of the proton motive force or the concentration of the energy source adenosine triphosphate at the moment of measurement (Tholozan et al., 1999); (iv), the integrity of the bacterial membrane (Fittipaldi et al., 2012), i.e. the number and size of membrane leakages, which also present some variations. Therefore, each time the term “viable” is used, it has to refer to a specific context. It has fundamental practical implications for the assessment of the risk for infection, e.g. that the seemingly clear-cut parameter CFU masks infectious potential. The question arises how *Campylobacter* die under “physiological” conditions on chicken products and how to visualize this “physiological death”. The parameter CFU apparently underestimates the infectious potential, in particular after stress exposure of the bacterium, e.g. on retail products (see below). Quantitative determination of specific mRNA or 16S rRNA matched well with CFU in chicken faeces (Bui et al., 2012). Hence, in this study reverse transcriptase PCR did not enhance the informative value of CFU. To our mind, the most likely physiological death of the microaerobic bacterium on chicken products is caused by oxidative stress. It was exemplary shown that oxidative stress decreased *Campylobacter* CFU and, concomitantly, the amount of a stress-sensitive oxidoreductase (Yamaski et al., 2004). Moreover, cold stress slows down enzymatic functions, like katalase (Hazeleger et al., 1998) and superoxide dismutase, which are implicated in the combat against oxidative stress (Flint et al., 2014). Note that the intrinsic metabolism, which also produces putatively poisonous oxygen species, is also slowed down at cold temperatures, which might compensate for lower activity of essential enzymes involved in stress response under such conditions. However, with time oxidation of lipids and proteins cannot be prevented nor restored, slowly enhancing loss of cell functions and loss of membrane integrity. We showed recently that artificially killed *Campylobacter* using 5% H$_2$O$_2$ led to complete loss of CFU (≥ 6 log), maintenance of the DNA inaccessible to DNase (absence of bacterial lysis), and access of DNA intercalating dyes to the cytoplasm (loss of membrane integrity) (Krüger et al., 2014). In contrast, transient de-energization of *Campylobacter* led to transient loss of membrane polarization but did not lead to any decrease in CFU after re-energization. In conclusion, a pragmatic way of defining bacterial death for food control would be the monitoring of membrane integrity rather than the metabolic state of the bacterium. We suggest to determine “intact and potentially infectious units” (IPIU) as a quantitative parameter measuring the number of bacteria with an intact membrane impermeable to propidium iodide (and its analogue propidium monoazide), previously applied in live/dead discrimination (Boulos et al., 1999; Giao et al., 2009). Bacteria with intact membranes are principally capable of metabolic activity and repair of sublethal damage. Hence, it was previously suggested that in product safety applications, death would ideally be defined by loss of membrane integrity (Nebe-von-Caron et al., 2000).
Principles of real-time PCR quantification in combination with live/dead discrimination

Live/dead discrimination using DNA intercalating dyes is based on differences in membrane permeability of viable and dead bacteria (for a review see Fittipaldi et al., 2012). These permeability differences lead to the selective intercalation of monoazide dye analogues into cytoplasmic DNA located in membrane-compromised (dead) bacteria. Upon DNA intercalation of these dyes, covalent binding of the molecules to DNA is accomplished by light-induced crosslinking, inactivating DNA for subsequent PCR amplification. In an ideal scenario, the total PCR signal stems from viable cells, whereas the dead cell signal is completely absent. Plenty of studies revealed that this ideal scenario differs from reality and we will discuss in the following crucial parameters for maximal live Campylobacter detection with concomitant minimal signal from dead cells.

Dye exclusion from live bacteria

In order to get a clear picture about the choice of a suitable quantitative live/dead discriminatory dye, the principles of dye exclusion from live bacteria have to be uncovered. If exclusion of the dye is based on active efflux of the dye from the bacterium, not only integrity of the membrane but also the metabolic state of the bacterium will be determined. The latter depends on the growth phase and stress conditions and leads to underestimation of intact and potentially infectious units. It is desirable that the dye indicator is passively excluded from (transiently inactive or less active) cells. For this reason, we performed membrane permeability assays with propidium iodide (PI) and its analogue propidium monoazide (PMA) or ethidium bromide (EtBr) and its analogue ethidium monoazide (EMA), intercalating dyes used for the quantitative detection of viable Campylobacter (Rudi et al., 2005; Jøsefsen et al., 2010; Pacholewicz et al., 2013; Seinige et al., 2014). When we abolished the proton motive force of Campylobacter by addition of an uncoupler of the proton gradient across the inner membrane or when we selectively inhibited efflux transporters, EtBr significantly entered the bacterium in a time- and concentration-dependent manner (Krüger et al., 2014). Release of uncoupler or efflux transport inhibitor completely restored the capability to form a CFU, thereby, demonstrating a transient non-detectable state of Campylobacter (EtBr entry) with full bacterial resurrection after stress release. In untreated control cells, we observed marginal entry of EtBr into exponentially grown Campylobacter but considerable entry into stationary grown cells, respectively. In contrast, PI stayed passively out of the bacterium, irrespective of the metabolic state and/or treatment of the cells and was a reliable indicator of death-related membrane leakage. The respective data for the photo-crosslinkable analogues are summarized in Table 1. Depending on the energy status of the cell, variable influx of EMA into Campylobacter was observed, as detected by reduction of PCR signal. This influx was most pronounced in buffer without nutrients (de-energized state of the bacterium) and for stationary phase bacteria that are less metabolically active. In contrast and in agreement with our observations obtained with PI, PMA was passively excluded from all viable bacteria, irrespective of the energy state or the growth phase. Also for other bacterial species, it was acknowledged that PMA has advantage over EMA concerning more efficient discrimination between viable and dead bacteria (Nocker et al., 2006; Loozen et al., 2011; Yanez et al., 2011).

In a recent study, the authors concluded that EMA was a promising rapid method for the diagnostic application in Campylobacter quantification (Seinige et al., 2014). The authors correlated EMA-qPCR results of spiked “reference Campylobacter” with laboratory-cultivated “field strains” of comparable physiological state. However, when EMA signal reduction from viable cells is standardized using laboratory strains under optimal energetic conditions, it is likely that the number of intact and potentially infectious bacteria (with unknown metabolic states and unknown history of stress exposure) on food samples are underestimated. Moreover, the authors also observed a drastic dependence of EMA concentration on entry into Campylobacter, leading to huge reduction of viable counts when a much higher concentration of 100 μg/ml EMA was used. Insufficient differentiation of live and dead Campylobacter by EMA was also demonstrated previously (Flekna et al., 2007). Also He and Chen (2010) reported toxic effects on viable cells in the presence of 100 μg/ml of EMA, although they obtained promising results for the detection of coccoid Campylobacter with lower EMA concentrations. In contrast, Rudi et al. (2005) had observed marginal dye influx into viable Campylobacter using 100 μg/ml of EMA. How can these divergent data from different laboratories be explained?

The actual concentration of dye at the bacterial membrane is largely influenced by the heterogeneous matrix, and also different temperature-time combinations during dye incubation significantly contributed to the amount of EMA entry into viable Campylobacter (Krüger et al., 2014). After incubation of Campylobacter with EMA on ice, we indeed observed much less entry of the dye into viable bacteria. However, the signal reduction of dead Campylo-

TABLE 1: Decrease of qPCR detection (Δct) of live Campylobacter by use of intercalator dyes

<table>
<thead>
<tr>
<th>Campylobacter growth phase</th>
<th>Condition</th>
<th>Energy state</th>
<th>EMA influx</th>
<th>PM influx</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Δct</td>
<td></td>
</tr>
<tr>
<td>Exponential</td>
<td>Chicken rinse</td>
<td></td>
<td>1.1 ± 0.8</td>
<td></td>
</tr>
<tr>
<td>Exponential</td>
<td>Buffered peptone water</td>
<td></td>
<td>1.9 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>Stationary</td>
<td>Chicken rinse</td>
<td></td>
<td>4.0 ± 0.6</td>
<td></td>
</tr>
<tr>
<td>Stationary</td>
<td>Buffered peptone water</td>
<td></td>
<td>6.0 ± 2.5</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>PBS</td>
<td></td>
<td>8.8 ± 2.4</td>
<td>0.3 ± 0.3</td>
</tr>
<tr>
<td>All</td>
<td>PBS + Inhibition of active efflux-transporters</td>
<td>n. d.</td>
<td>n. d.</td>
<td>0.9 ± 0.5</td>
</tr>
<tr>
<td>All</td>
<td>PBS + Transient depletion of proton-motive force</td>
<td>n. d.</td>
<td>n. d.</td>
<td>0.6 ± 0.4</td>
</tr>
</tbody>
</table>

PM is passively excluded from intact Campylobacter, while EMA enters live bacteria in an energy-dependent manner. Δct values (± 20 μM dye) after 15 min of incubation at room temperature are depicted from Krüger et al. (2014). Δct-values for higher PM concentrations (up to 100 μM) were comparable to those observed for 20 μM.
bacter with EMA was not satisfactory under the same temperature-time conditions in the presence of chicken rinse (Krüger et al., 2014). It has to be noticed that the way of inactivation of bacteria for the production of a dead cell standard can also lead to variation of DNA loss from bacteria (Krüger et al., 2014) and the degree of intercalator dye-qPCR reduction (Rudi et al., 2005).

In conclusion, the fact that entry of EMA into viable Campylobacter is concentration-, matrix-, temperature- and time-dependent, reproducible processing of a large number of samples in routine laboratories is complicated, while, in addition, appropriate reference standards are missing. Using PMA, these uncertainties concerning the current metabolic state of the target viable bacteria and/or moderate differences of processing time and temperature are negligible, since PMA is passively excluded from intact and potentially infectious units in a reproducible and robust manner.

Maximal reduction of the residual signal from dead cells
In addition, maximal reduction of the residual signal from dead cells is crucial. We do not further address EMA for reasons explained above but point out that the same principles are valid for both photo-crosslinkable dyes concerning residual dead cell signal. The magnitude of signal reduction of dead bacteria is based on the concentration of the dye at the bacterial membrane, the size and amount of membrane leakages per bacterium, the temperature and the target size used in the real-time PCR assay. Entry of PMA into membrane-compromised bacteria is a diffusion-limited process. Hence, the amount of PMA reaching the cytoplasmically located DNA within a given time period is not only dependent on the concentration gradient at the bacterial membrane but also on temperature. Consistently, higher incubation temperature resulted in improved efficiency of PMA to reduce false-positive signal from dead bacteria (Nkou-Kenfack et al., 2013). Temperatures slightly below or equal than growth temperature (in order to maintain viability of the target live bacteria) will lead to higher diffusion of the dye through membrane leakages into dead bacteria. The actual concentration of the dye at the bacterial membrane is influenced by the amount of organic matter, like proteins, free DNA and/or tissue present in the food matrix. In order to lower at least soluble compounds, centrifugation and resuspension in phosphate-buffered saline prior to staining with PMA improved dead cell signal reduction (Krüger et al., 2014). Moreover, the size of the target sequence used for real-time PCR detection defines the magnitude of dead cell signal reduction. In principle, the longer the target fragment, the higher the probability of PMA to intercalate into the target sequence hindering PCR amplification. Likewise, the magnitude of dead cell signal inactivation increased with ampiclon length (Contreras et al., 2011). An optimal ampiclon length provides sufficient PCR efficiencies with maximal dead cell signal reductions. The 287 bp ampiclon of the 16S rRNA gene targeted by real-time PCR was published as official method in the framework of the § 64 of the German Food and Feed Code (LFGB, 2013) (Lübeck et al., 2003; Jøsefsen et al., 2004). In most real-time PCR applications, a target length of ≤ 100 bp is used for optimal PCR performance. Although the chosen target is longer, complete elimination of rest signal from dead cells was not feasible (Pacholewicz et al., 2013). However, this target was used for the quantitative detection of viable Campylobacter in different chicken matrices in excess of 2.5–3 log dead bacteria (Krüger et al., 2014).

The need for an appropriate sample process control for quantification
Real-time PCR determines the number of target sequences, i.e. chromosomal copies within the sample of interest. Although the number of chromosomes can significantly deviate from one per bacterium, in particular in fast-growing organisms (Ferullo et al., 2009), only a 1.3-fold relative difference of chromosomal copy number per bacterium estimated after DNA extraction was observed for Campylobacter grown to exponential versus stationary phase under our conditions. Thus, the number of chromosomal copies well matched the number of cell counts for a large variation of growth conditions. It has to be kept in mind that the correlation of cell count with CFU is highly variable and depends on the bacterium’s physiological condition (Krüger et al., 2014) and the growth medium used (Rodgers et al., 2012). Therefore, it is unrealistic that one Campylobacter corresponds to one CFU detected, unless the most active bacteria are identified by flow cytometry analysis and subsequently selected by fluorescence-activated cell sorting (Mat-suoka et al., 2014). Moreover, aggregation of bacteria can decrease the number of CFU. Hence, quantitative PCR results should be translated into chromosomal number or into cell counts, not CFU. For practical implementation, the number of cell counts can be estimated from the optical density, with OD_{600nm} = 0.2 corresponding to approximately 10^9 cell counts per ml (Krüger et al., 2014).

The yield of DNA preparations from bacteria differs according to the extraction methods applied. Even if a method is routinely applied, the amount of total organic matter of the heterogeneous matrices can vary considerably, contributing to alterations in DNA extraction efficiency. In addition, PMA diffusion in “dead” cells and crosslink efficiency to DNA should be monitored for each sample. Oxidative stress treatment or controlled heat treatment of C. jejuni with concomitant monitoring of bacterial lysis will be useful for laboratories to generate their own “dead cell standard”. In future, a distinct number of membrane-compromised bacteria with defined membrane permeability properties should be detectable by real-time PCR using an independent target sequence. This internal sample process control (ISPC) will lead to reliable quantitative detection of Campylobacter by constant monitoring of all relevant parameters. The distinct number of cell counts without PMA treatment would serve as quantification standard for DNA extraction. The defined membrane permeability properties would be helpful in referring to the same degree of membrane leakage (“death”) and could monitor the efficiency for dead cell signal reduction throughout the procedure. In consequence, different laboratories would be enabled to obtain reproducible quantitative results, using slightly deviating methods and various undefined matrices.

Suitable detection of Campylobacter along the food chain
Given the above mentioned fact that detection of viable Campylobacter is hampered by inefficient quantitative
culturability after stress exposure, we noticed that there is much confusion about the choice of a suitable detection method for different samples along the food chain. In Table 2 we summarized the different food chain stages of chicken, including an estimate of the concentration of Campylobacter expected to be found, the assumed physiological condition of the bacterium (stressed, non-stressed) and the resulting recommended parameter/method for reliable qualitative and/or quantitative detection.

Primary production

Upon colonization of the host intestine, Campylobacter are constantly shed and can be detected in faecal droppings. Once introduced into a flock, the bacterium can spread within a few days (van Gerwe et al., 2005). Concerning the concentration of Campylobacter, caecal contents exhibit the highest Campylobacter load, ranging between 10^8 and 10^10 CFU/g (Musgrove et al., 2001; Stern et al., 2005; Reich et al., 2008; Rodgers et al., 2012). Storage for 72 hours at cold temperatures led to a slight reduction in the number of culturable bacteria, still leading to a highly reliable detection of the bacterium by growth on agar plates (Rodgers et al., 2012). Since faecal and caecal samples contain very high concentrations of the bacterium, enrichment, which bears the risk of overgrowth of resistant competitive flora, will be omitted in the modified ISO 10272-1C by direct plating on mCCDA (Technical Advisory Group CEN/TC 275/WG 6/TAG 19, personal communication).

Outside the intestine, the microaerobic and thermophilic bacterium is primarily confronted with oxidative, cold and drought stress. Hence, the efficiency of Campylobacter detection in faecal droppings depends on the time period after faecal exit from the intestine. Consistently, the cultural detection of Campylobacter decreased with time (Bui et al., 2012; Ahmed et al., 2013). While quantitative cultural detection is feasible from fresh faecal droppings, Campylobacter are insufficiently detected after long-term exposure to cold, oxygen and drought. In consequence, sampling of already desiccated faecal droppings, which can occur by using boot socks, might lead to a lower detection of Campylobacter CFU. However, detection of DNA by real-time PCR is a rapid method and reliably indicates flock colonization in primary production, irrespective of the sample type. Since faecal shedding of Campylobacter correlates with active colonization and multiplication of the bacterium within the intestine of chicken, evidence of bacterial viability during the detection assay is dispensable for the interpretation of the Campylobacter status of the flock. Importantly, DNA extraction from faeces has to be checked for PCR inhibitors by adding an internal amplification control. Common detection limits range around 10^3–10^4 bacterial counts/g faeces (Rodgers et al., 2012; Garcia et al., 2013; Janzer et al., 2014) and can be explained from the detection limits of real-time PCR of around ten copies per reaction and the fact that only a fraction of the extracted DNA can be analysed per assay without PCR inhibition. However, since the concentration of Campylobacter in faeces significantly exceeds 10^6 bacterial counts/g in most cases, detection limits are negligible. Note that if numbers of 1–5 CFU/g are reported as detection limits in real-time PCR applications, either this number refers to the number of initially spiked CFU before enrichment or the number of CFU corresponds to a higher number of bacterial counts, since not every bacterium forms a CFU on the agar plate (as discussed above).

Slaughterhouse

Concentrations of Campylobacter within caecal or faecal contents of chicken are approximately 3 log

<table>
<thead>
<tr>
<th>Stage of food chain</th>
<th>Sample type</th>
<th>Expected concentrations of Campylobacter per g</th>
<th>Exposure time, stress condition of Campylobacter</th>
<th>Suitable parameter/s for risk assessment</th>
<th>Explanatory statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary production</td>
<td>Caecal content</td>
<td>10^9–10^10 (+)</td>
<td>short-term, cold/oxygen</td>
<td>CFU, DNA</td>
<td>Fecal shedding of Campylobacter indicates colonization of the flock; intrinsic evidence for bacterial viability and, thus, DNA detection sufficient for the determination of the flock status</td>
</tr>
<tr>
<td></td>
<td>Fresh faecal droppings</td>
<td>10^8–10^9 (+)</td>
<td>short-term, cold/oxygen</td>
<td>CFU, DNA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faecal droppings (wet)</td>
<td>10^6–10^8 (+)</td>
<td>medium-term, cold/oxygen</td>
<td>growth (yes/no), DNA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boot socks (incl. dried faeces)</td>
<td>10^6–10^8 (+ or ±)</td>
<td>long-term, cold/oxygen/drought</td>
<td>DNA, growth (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Slaughterhouse</td>
<td>Carcass skin</td>
<td>10^9–10^10 (+)</td>
<td>short-term, cold/oxygen</td>
<td>CFU, IPIU</td>
<td>Fresh contamination of carcass surface; reasonable detection by CFU unless stress has been exerted by e. g. decontamination</td>
</tr>
<tr>
<td></td>
<td>Carcass skin after decontamination (e. g. lactic acid)</td>
<td>≤ 10^8–10^9 (+ or ±)</td>
<td>short-term, cold/oxygen/acid</td>
<td>IPIU, growth (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td>Fresh chicken</td>
<td>10^9–10^10 (+)</td>
<td>long-term, cold/oxygen</td>
<td>IPIU, growth (yes/no)</td>
<td>Only qualitative culture-dependent detection reasonable; IPIU eligible for quantification</td>
</tr>
<tr>
<td></td>
<td>Frozen chicken and meat preparations</td>
<td>< 10^8–10^9 (+ or ±)</td>
<td>long-term, cold/oxygen/freezing and/or spice</td>
<td>IPIU, growth (yes/no)</td>
<td></td>
</tr>
</tbody>
</table>

1 Numbers of total cell counts (not CFU) estimated on the basis of a, (Musgrove et al., 2001; Stern et al., 2005; Reich et al., 2008; Rodgers et al., 2012); b, (Stern and Robach, 2003; Ahmed et al., 2013; Berghaus et al., 2013); c, (Bui et al., 2012; Ahmed et al., 2013); d, (Cox et al., 2001; Berghaus et al., 2013); e, (Stern and Robach, 2003; Rosenquist et al., 2006; Reich et al., 2008; EFSA, 2010b; Stingl et al., 2012; Pacholewicz et al., 2013); f, (EFSA, 2011); g, (Calicott et al., 2008; Baumgartner and Felleisen, 2011; Stingl et al., 2012); h, (Calicott et al., 2008; Habib et al., 2008; Baumgartner and Felleisen, 2011).

2 In brackets, estimation of the portion of non-stressed bacteria capable to be detected as CFU; ++, high amount of non-stressed bacteria; +, medium amount of non-stressed bacteria; ±, most bacteria stressed (and not able to form a CFU).

3 IPIU, intact and potentially infectious units detected by qPCR in combination with PMA

4 Note that even higher concentrations were recently found (median of 10^9/g; Vidal, A., personal communication)
higher compared to those of Salmonella (Berghaus et al., 2013). In the process of slaughtering, in particular during defeathering and evisceration, faecal leakage leads in turn to relatively high contamination of the carcass with Campylobacter (Rosenquist et al., 2006; Fachołowicz et al., 2013), leading to common contamination levels of 10^3–10^4 CFU per g skin for carcasses after chilling (Stern and Robach, 2003; Rosenquist et al., 2006; Reich et al., 2008; EFSA, 2010b; Stingl et al., 2012; Fachołowicz et al., 2013). Since Campylobacter just exited the intestine, the bacterium on these fresh carcass skin samples is reasonably quantified using the standard ISO 10272-2:2006 enumeration method. A quantitative microbiological criterion of 500–1000 CFU/g skin is currently discussed by the EU commission and planned to be set at the slaughterhouse (EFSA, 2011).

Decontamination of carcasses is already implemented in some countries as control options, while the European Union still maintains a reluctant attitude towards those measures. Decontamination efficiencies, summarized in a recent EFSA opinion are commonly evaluated on the basis of CFU (EFSA, 2011). It remains to be elucidated, to which extent these procedures also lead to significant reduction in IPIU, using PMA-based real-time PCR.

Retail

Due to the remarkable decrease in growth capabilities of stressed bacteria, there is a considerable gap between the detection limit of Campylobacter by cultivation and its infectious potential. No reduction of Campylobacter prevalence but a significant quantitative reduction of the number of culturable Campylobacter was observed comparing German broiler carcasses sampled at slaughterhouse with fresh meat at retail (Stingl et al., 2012). Loss of skin (e. g. breast filet) or freezing of a part of the products might have contributed to a lower quantitative contamination load of viable bacteria on the retail product (Baumgartner and Felleisen, 2011). However, with respect to chicken retail products presenting the main source for Campylobacter infection, the residual intact and potentially infectious units (IPIU) of Campylobacter on chicken meat must be considered a sufficient threat for human infections.

Freezing is considered to be a physical decontamination process, leading to a two log reduction of Campylobacter CFU after three weeks of freezing (EFSA, 2011). The study of Callicott and colleagues (2008) directly matched broiler batches with human campylobacteriosis cases in Iceland on the basis of flaA genotypes. This study is exceptional, since only domestically acquired campylobacteriosis cases were analysed and a high percentage of all broiler lots were sampled, since the production industry is small and delimited. Genetically matching isolates within a time frame of two weeks between broiler processing and human infection onset were defined as implicated in human disease. As result the implicated product lots of fresh meat had a significantly higher contamination level than the non-implicated lots. For frozen retail products, implicated lots were significantly larger than non-implicated lots (Callicott et al., 2008). We asked whether the mean contamination level of implicated fresh and frozen lots differed significantly using the quantitative data from the latter study, eventually indicating underestimation of the infectious potential of Campylobacter by quantification of CFU. As expected, the implicated frozen products had an overall lower contamination level as measured by CFU than the fresh products (Fig. 1). However, the conclusion is limited due to the restricted number of broiler batches with quantitative contamination data directly matched to human cases in this study (n = 21, Callicott et al., 2008; Fig. 1). Besides, the number of identified human cases matching the 13 fresh broiler lots was higher (n = 45) than for frozen lots (n = 8), although quantitative data of eight further frozen implicated broiler lots were missing, which genetically matched 18 of the 45 human cases connected with fresh meat. Nevertheless, although freezing does reduce the number of CFU, the infectious potential of frozen products might not be reduced to the same extent and can significantly be underestimated. This issue will have to be addressed in more detail in future studies with enhanced informative value derived from IPIU quantification using PMA-based qPCR.

Conclusion

The parameter CFU, apparently clear-cut in its quantitative interpretation, can mask the infectious risk when applied to fastidious microorganisms after stress exposure. However, for fresh samples, e. g. from the slaughterhouse, CFU is a reasonable parameter for the contamination level of Campylobacter on carcasses and might be targeted in food control by setting an appropriate microbiological criterion. For the improvement of the quantitative risk assessment along the complete

FIGURE 1: Putative underestimation of the infectious potential of culturable number of Campylobacter from frozen chicken. CFU of Campylobacter on chicken carcasses (fresh versus frozen), which were directly implicated in human campylobacteriosis cases in Iceland, were taken from the study of Callicott et al., 2008. Frozen chicken implicated in human campylobacteriosis appeared to exhibit lower CFU than fresh chicken. Note that the overall number of data is limited and that the number of infected humans (which is not known but might be deduced from the number of collected and matching isolates) is not considered.

<table>
<thead>
<tr>
<th>Mean Contamination (log CFU/carcass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.09</td>
</tr>
<tr>
<td>1.53</td>
</tr>
<tr>
<td>1.67</td>
</tr>
<tr>
<td>1.88</td>
</tr>
<tr>
<td>2.52</td>
</tr>
<tr>
<td>2.54</td>
</tr>
<tr>
<td>2.72</td>
</tr>
<tr>
<td>2.82</td>
</tr>
<tr>
<td>2.89</td>
</tr>
<tr>
<td>2.92</td>
</tr>
<tr>
<td>3.17</td>
</tr>
<tr>
<td>3.36</td>
</tr>
<tr>
<td>3.41</td>
</tr>
<tr>
<td>3.56</td>
</tr>
<tr>
<td>3.71</td>
</tr>
<tr>
<td>3.81</td>
</tr>
<tr>
<td>4.1</td>
</tr>
<tr>
<td>4.17</td>
</tr>
</tbody>
</table>
food chain, it is of high interest to define bacterial death by a reliable parameter other than CFU. We suggest to quantify intact and potentially infectious units (IPU), pragmatically defined as bacteria with an intact membrane impermeable to PMA. As a prerequisite, an internal sample process control (ISPC) has to be generated, which can be detected independent of the target Campylobacter. This ISPC will define “bacterial death” and absolute number of cell counts by providing a distinct number of membrane compromised bacteria with defined permeability properties. We are aware that the implementation of IPU in food legislative is not subject to immediate acceptance. However, for fastidious bacterial pathogens, CFU inevitably underestimates the threat for the consumer. For viruses, for which viability detection is often lacking, alternative detection via PCR methods are increasingly accepted within a legislative context (EFSA, 2012).

Conflict of interest

This manuscript was prepared as one of the duties of the German National Reference Laboratory for Campylobacter. The authors declare no conflict of interest, which could influence the content or opinions presented in the manuscript.

References

EFSA (2010b): Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses, in the EU, 2008; Part B: Analysis of factors associated with Campylobacter colonisation of broiler batches and with Campylobacter contamination of broiler carcasses; and investigation of the culture method diagnostic characteristics used to analyse broiler carcass samples. EFSA J 8: 1522.

EFSA (2011): Scientific Opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA J 9: 2105.

LFGB (German Food and Feed Code) (2013): Detection of Campylobacter spp. in minced meat – real-time PCR methods, § 64, L-06.32-1, Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL), Beuth GmbH, Germany.

Address for correspondence:
Dr. Kerstin Stingl
Bundesinstitut für Risikobewertung
Abteilung Biologische Sicherheit
Nationales Referenzlabor für Campylobacter
12277 Berlin
Germany
kerstin.stingl@bfr.bund.de