Mitigation strategies for Campylobacter spp. in broiler at pre-harvest and harvest level

Minimierungsstrategien für Campylobacter spp. beim Broiler in der Primärproduktion und bei der Fleischgewinnung

Günter Klein, Wiebke Jansen, Sophie Kittler, Felix Reich

In contrast to other foodborne zoonotic agents an elimination of Campylobacter spp. from animal production, especially poultry production, seems not to be feasible. Therefore mitigation strategies focus on reduction of the Campylobacter spp. concentration in primary production and further minimalisation during processing. In primary production biosecurity measures (incl. hygiene barriers and restricted access) are the methods applied most commonly and most effectively so far. Experimental approaches and few field trials also showed that bacteriophages, electrolyzed oxidizing water, organic acids or medium chain fatty acids (applied via drinking water) are also effective in reducing Campylobacter prevalence and/or concentration. However this reduction cannot be transferred in all cases to the situation in the slaughterhouse. Therefore additional measures have to be taken in account in the slaughterhouse to prevent cross-contamination. Logistic or scheduled slaughter can prevent cross-contamination but cannot further reduce Campylobacter concentration. Process parameters like elevated scalding temperature can contribute to such a reduction, but may also alter the product quality. Therefore no single pre- or harvest measure is sufficient for the reduction of Campylobacter concentration, but a combination of measures in both production levels is needed.

Keywords: thermophilic Campylobacter spp., bacteriophages, biosecurity, organic acids, EO water, slaughter technology, decontamination

Schlüsselwörter: Thermophile Campylobacter spp., Bakteriophagen, Biosicherheit, organische Säuren, EO-Wasser, Schlachttechnologie, Dekontamination
Introduction

Campylobacter spp. are still the most frequent cause of bacterial foodborne infections in Germany, Europe and worldwide (EFSA, 2014a). Source attributions are not performed systematically, but from the published literature and some country specific evaluations it can be concluded, that poultry production and poultry meat is the main source of infection for humans (EFSA, 2011). Although other food animal species like pigs are not significantly differently affected by *Campylobacter* contamination on the farm level, at the retail level only poultry and poultry meat are positive for *Campylobacter* with relevant numbers (EFSA, 2014b). The reason is the different slaughter and cooling technology (cross-contamination and moist environment) and the optimal ecological niche for *Campylobacter* on poultry carcasses and - products thereof (Ellerbroek et al., 2010). In pig slaughter air cooling is regularly applied, which is of disadvantage for the survival of *Campylobacter*, whereas in poultry slaughtering spray cooling is performed, which due to moist surfaces and topography of the carcass (skin folds) is a friendly environment for *Campylobacter*.

Therefore microbiological criteria for poultry carcasses after cooling are under discussion, which aim to reduce the overall *Campylobacter* load during poultry processing and on products (Ellerbroek, 2012). To reach this goal, intervention strategies are most effective at the pre-harvest or primary production stage and/or at the harvest or slaughterhouse and processing stage (Klein, 2010; EFSA, 2011). At pre-harvest, strategies can, according to Lin (2009), be divided in three categories:

- Reduction or elimination of environmental exposure (biosecurity measures like fly nets and hygiene barriers)
- Application of agents aiming at combating *Campylobacter* colonisation and minimising the bacterial load (e.g. bacteriophages, bacteriocines)
- Improving host resistance (support the immune system, vaccines, probiotics/competitive exclusion, genetic selection of the host)

Most strategies have been shown to be effective on a laboratory scale or in in vitro experiments. However, only some of these methods have been tested in field trials and under commercial conditions. For some methods, like bacteriocine application, also unsolved legal aspects have to be considered. Therefore the aim of this review is to focus on selected strategies at pre-harvest and harvest level that are already in use (like different biosecurity measures) or that have at least been tested in field trials or larger experimental settings. Also legal aspects should be solved in principal and commercial applicability should be feasible. Therefore the application of bacteriocines, vaccination and competitive exclusion is not considered further in this study.

Pre-harvest mitigation strategies

Biosecurity measures

Biosecurity measures are the most common measures applied in primary production to combat *Campylobacter* and to minimize colonisation in poultry. Measures covered by biosecurity are often in conflict with other goals of sustainable farming, like outdoor or free range farming, other animal species on the farm, green environment with a minimum of concrete surfaces, open and visitor friendly stables or even holiday on farms. However, these factors are considered risk factors for *Campylobacter* introduction and contamination of poultry (EFSA, 2011).

Hygiene barriers are present on all farms, but the practical implementation can be very different. Minimum requirements include boot dips or change of footwear, hand washing facilities and physical barriers (EFSA, 2011). Often only an optical barrier is present and dips with disinfectant are not well maintained, compromising the effectivity of measures. Still, if consequently applied, biosecurity measures are seen as the most effective measures currently available and could contribute to reduce the risk of infection up to 50% (Gibbens et al., 2001; Newell et al., 2011).

One of the main risks identified are also insects, especially flies that can be the vector for *Campylobacter* transmission to the birds (EFSA, 2011). Consequently the introduction of fly screens has been evaluated and promising results were reported especially from nordic countries (Hald et al., 2007). These protective screens have to be introduced in a very strict way in order to be effective, i.e. not only windows and doors must be protected but also other technical equipment like ventilation etc. must be included. The effectivity shown in nordic countries is not easily transferable to Middle European or South European countries, as the prevalence of *Campylobacter* as well as the occurrence of flies is different in these countries.

Basic biosecurity measures can therefore contribute to a lower *Campylobacter* load if consequently applied and restricting also the access to poultry holders by personnel or visitors.

Organic acids and MCFA

Organic acids such as formic, acetic, hydrochloric and propionic acid showed in vitro a strong synergistic activity reducing *Campylobacter* spp. at pH 4 below 1 log_{10} cfu/ml (colony forming units/ml) within one hour, and the reducing effect in combination was higher than applying the single organic acids individually (Chaveerach et al., 2002). Triglyceridic medium chain fatty acids (MCFA) and their derivatives demonstrated in emulsion in vitro a strong reducing effect on *Campylobacter jejuni* (Thormar et al., 2006; Hermans et al., 2012). Organic acids and MCFA prevented in vivo the survival of *Campylobacter* in drinking water of broiler chicken (Chaveerach et al., 2004; Hermans et al., 2012).

During a 10 h pre-slaughter feed withdrawal of naturally *Campylobacter*-colonised broiler, drinking water supplemented with 0.44% lactic acid significantly reduced the crop contamination with *Campylobacter* (62.3%) as compared with the controls (85.1%) (Byrd et al., 2001). Lactic acid also reduced the incidence of *Campylobacter* found on pre-chill carcass rinses by 14.7% compared with the controls in the same trial (Byrd et al., 2001). The MCFA derivatives monoprin as water additive showed a *Campylobacter*-reducing effect on cloacal counts in artificially and naturally colonised broiler chicken, yet caecal counts could not be predictably reduced (Hilmansson et al., 2006; Metcalf et al., 2011). MCFA in drinking water neither reduced nor prevented caecal *Campylobacter*-colonisation of artificially inoculated broiler chicken whereas the colonisation threshold after 24 h was raised significantly of those broilers receiving supplemented water (Hermans et al., 2012).
TABLE 1: Effects of treatment with organic acids (OA), MCFA and EO water in broiler production on thermophilic Campylobacter

<table>
<thead>
<tr>
<th>Study design</th>
<th>Intervention Measure</th>
<th>Effects</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vivo/field trial</td>
<td>OA</td>
<td>Lactic acid</td>
<td>Reduced crop counts and reduced incidence on carcasses</td>
</tr>
<tr>
<td>In vitro/in vivo</td>
<td>OA</td>
<td>Formic, acetic, hydrochloric, propionic acid</td>
<td>Significantly effective in drinking water, reduced transmission, limited effect on caecal contamination</td>
</tr>
<tr>
<td>Field trial</td>
<td>OA and MCFA</td>
<td>Acetic acid, formic acid, propionic acid, sorbic acid with MCFA</td>
<td>Effective in drinking water, reduced caecal counts, limited effect on carcasses</td>
</tr>
<tr>
<td>In vitro</td>
<td>MCFA</td>
<td>Monocaprin</td>
<td>Significant reductions in drinking water/feed emulsions</td>
</tr>
<tr>
<td>In vivo</td>
<td>MCFA</td>
<td>Caprylic acid</td>
<td>Inconsistent effect on caecal counts</td>
</tr>
<tr>
<td>In vivo</td>
<td>MCFA</td>
<td>Caprylic acid</td>
<td>Significant reduced cloacal counts, no effect on transmission</td>
</tr>
<tr>
<td>In vitro/in vivo</td>
<td>MCFA</td>
<td>Caprylic, caprylic, capric and lauric acid</td>
<td>Significantly effective in drinking water, reduction of susceptibility, no effect on caecal counts and transmission</td>
</tr>
<tr>
<td>In vivo</td>
<td>EO water</td>
<td>Acid pH</td>
<td>Significant reduction on artificially contaminated chicken wings in 10/30 min</td>
</tr>
<tr>
<td>In vivo</td>
<td>EO water</td>
<td>Acid pH</td>
<td>Significant reduction on broiler carcasses in 40 min</td>
</tr>
<tr>
<td>In vivo</td>
<td>EO water</td>
<td>Acid pH</td>
<td>Significant reduction on artificially contaminated broiler carcasses in 10/15 s</td>
</tr>
<tr>
<td>Field trial (abattoir)</td>
<td>EO water and OA</td>
<td>Neutral pH and lactic acid</td>
<td>Limited reduction on naturally contaminated broiler carcasses for 3 min</td>
</tr>
<tr>
<td>Field trial (flock and abattoir)</td>
<td>EO water</td>
<td>Neutral pH</td>
<td>Effective in drinking water, significantly effective on broiler carcasses</td>
</tr>
</tbody>
</table>

In field trials carried out by Jansen et al. (2014) a water additive based on organic acids in combination with MCFA, ammonium formate and coconut/palm kernel fatty acid distillate was applied on naturally colonised broiler chicken for three full commercial rearing periods (42 d). Results indicated that a permanent application of 0.075% blended organic acids (in ascending order: formic acid, acetic acid, propionic acid and sorbic acid) in combination with MCFA in drinking water reduced the carriage of Campylobacter spp. in the flock and in caecum content of broiler chicken. Moreover, the final concentration at pH 4–4.5 did not have detrimental effects on production parameters or animal welfare. But even though the introduction of Campylobacter spp. into the processing line could be reduced in single trials, the final contamination of the corresponding carcasses after slaughter was not significantly lowered.

These trials suggest that pre-harvest application of organic acids and MCFA to drinking water of broilers can potentially lower the caecal carriage in primary production but is not independently effective in targeting Campylobacter spp. in the food chain.

Electrolyzed oxidizing water

Electrolysed oxidizing (EO) water is a non-toxic sanitizer with a proven bactericidal effect widely elaborated in the food chain (Huang et al., 2008). Generated by the electrophoresis of additionally salted water, oxygen and chlorine radicals lead to disinfective, free-active chlorine and hypochlorous acid (Len et al., 2000). Depending on the ratio of catholyte (pH > 10) and anolyte (pH < 3), either alkaline, acidic or neutral EO water can be produced (Pissu, 2003, 2005). Though acidic and alkaline EO water has higher bactericidal potential, considerable corrosive effects and gas emission are disadvantages compared to neutral EO water (Len et al., 2002).

In the last decade, the efficacy of acidic EO water on major food-borne pathogens was elaborated. Fabrizio et al. (2002) indicated, that at pH 2.6 a reduction of Salmonella Typhimurium (< 1 log10 cfu/g), and of E. coli and coliform bacteria (1–2 log10 cfu/g) on broiler carcasses is possible. Especially on Campylobacter, acidic EO water (pH 2.5) showed a strong reducing effect of 3 log10/g within 10 min as well as 30 min on artificially contaminated chicken wings at 4°C as well as at 23°C (Park et al., 2002). Kim et al. (2005) and Northcutt et al. (2007) also reported the effectiveness of acidic EO water on Campylobacter on artificially contaminated broiler carcasses.

In field trials by Bügener et al. (2014a), drinking water of naturally colonised, commercial reared broiler flocks was supplemented permanently with 3% neutral electrolyzed oxidizing water (final pH 6.5–7.2) for three complete rearing periods. The addition of EO water prevented the survival of Campylobacter spp. in drinking water of the treated flocks, whereas the control flock water was repeatedly positive on day 35 of the rearing periods. Both, after thinning and main catching, corresponding carcasses were significantly lower contaminated. Due to the correlation of caecal content and carcass contamination (Allen et al., 2007; Reich et al., 2008), these results indicate a possible quantitative reduction in caeca of natural colonised flocks. Production parameters of the broilers were not affected negatively (Bügener et al., 2014b).

The permanent addition of neutral EO water in drinking water of broiler flocks seems therefore to reduce the carriage of Campylobacter spp. and appears to affect counts on carcasses. Current research focuses on the additional benefit of organic acids and EO water (Rasschaert et al., 2013) as synergistic hurdles in harvest decontamination of broiler carcasses towards a successfully synergic large-scale arrangement. Table 1 illustrates different drinking water treatment with organic acids, MCFA and EO water and their effect on thermophilic Campylobacter.

Bacteriophages

Bacteriophages are viruses that target bacterial cells. Like other viruses they depend on the metabolism of their host cell, their narrow host range is restricted to one bacterial strain or species. Lytic activity of bacteriophages was discovered in the early 20th century and they were widely used in the former Soviet Union to treat bacterial infections until their use was replaced by antibiotics. Bacteriophages can be isolated from virtually every source that harbours their host bacteria. Recently they have raised new interest as therapeutics for the treat-
ment of multiresistant bacteria and for reducing bacterial pathogens in the food production line (Kutateladze and Adamia, 2010). Different phages and application routes have been tested for reducing Campylobacter in broilers in in vivo trials (Loc Carrillo et al., 2005; Wagenaar et al., 2005; El-Shibiny et al., 2009; Carvalho et al., 2010; Fischer et al., 2013; Kittler et al., 2013). The application of cocktails, consisting of more than one phage, implies the advantage of broadening the host range and reducing the risk of bacterial resistance against the applied phages (Tanji et al., 2004).

Wagenaar et al. (2005) applied a 10 log_{10} pfu (plaque forming units) dose of one phage to ten day old chickens for six days. An immediate significant Campylobacter reduction of 3 log_{10} cfu/g caecal content was detected. A second trial included the application of two phages in chickens nearing harvest age but interestingly just a significant 1.5 log_{10} cfu/g faecal drop was observed. Loc Carrillo et al. (2005) tested phage doses of 5, 7 and 9 log_{10} pfu in 25 day old chickens. Significant drops of Campylobacter counts were detected for the 5 and 7 log_{10} pfu doses 24 h after phage application but not for the 9 log_{10} pfu dose, with 7 log_{10} pfu being the most effective dose (reduction up to 5.6 log_{10} cfu/g caecal content). For a poor colonizing C. coli strain, the 9 log_{10} pfu dose proved to be most effective (El-Shibiny et al., 2009).

Administration of a three-phage-cocktail via oral gavage and via feed was compared by Carvalho et al. (2010) in 7 day old chicks. While Campylobacter counts were significantly reduced in both experimental groups over the whole experimental period of seven days, application via feed was found to result in a slightly higher reduction.

Recently, first field trials were carried out by Kittler et al. (2013) using a four-phage-cocktail in naturally colonised broilers. In two of three field trials a significant reduction of Campylobacter of up to 3.2 log_{10} cfu/g faecal samples was achieved by applying a 7.5 log_{10} pfu dose of the cocktail to 10 000–13 500 broilers via drinking water 6–7 days before slaughter. In the non-significant trial phages were not able to propagate. Comprehensive studies on resistance of Campylobacter during application of this phage-cocktail were carried out by the same group, indicating that phage-resistance in Campylobacter is not necessarily detrimental for reduction of Campylobacter load in vivo (Fischer et al., 2013; Kittler et al., 2014).

These studies suggest that phages can lead to a significant reduction of Campylobacter in the broiler intestine resulting in a beneficial effect for public health. Phage application is easily carried out by the farmer and considered to be safe. Future studies will have to focus on suitable application protocols for commercial use of Campylobacter phages and on procedures controlling the

TABLE 2: Effects of treatment with bacteriophages in broiler production on thermophilic Campylobacter

<table>
<thead>
<tr>
<th>Study design</th>
<th>Applied Phage</th>
<th>Campylobacter colonisation</th>
<th>Effects on Campylobacter load in the broiler intestine</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vivo NCTC 12671</td>
<td>Campylobacter jejuni C356 inoculation</td>
<td>Oral 15-20 d</td>
<td>Significant reduction</td>
<td>Wagenaar et al., 2005</td>
</tr>
<tr>
<td>In vivo CP8</td>
<td>Campylobacter jejuni HPCS inoculation</td>
<td>Oral 25 d</td>
<td>No significant reduction</td>
<td>Loc Carrillo et al., 2005</td>
</tr>
<tr>
<td>In vivo CP220</td>
<td>Campylobacter jejuni HPCS inoculation</td>
<td>Oral 25 d</td>
<td>Significant reduction</td>
<td>El-Shibiny et al., 2009</td>
</tr>
<tr>
<td>In vivo NCTC 12673</td>
<td>Campylobacter jejuni 1474-06 inoculation</td>
<td>Oral 5 d</td>
<td>Significant reduction</td>
<td>Fischer et al., 2013</td>
</tr>
<tr>
<td>Field trial Cocktail NCTC 12672, 12673, 12674, 12678</td>
<td>Natural colonisation of Campylobacter jejuni</td>
<td>Drinking water 36 d</td>
<td>Significant reduction</td>
<td>Kittler et al., 2013</td>
</tr>
<tr>
<td>Field trial Cocktail NCTC 12672, 12673, 12674, 12678</td>
<td>Natural colonisation of Campylobacter jejuni two sequence types</td>
<td>Drinking water 32 d</td>
<td>No significant reduction</td>
<td>Kittler et al., 2013</td>
</tr>
<tr>
<td>Field trial Cocktail NCTC 12672, 12673, 12674, 12678</td>
<td>Natural colonisation of Campylobacter jejuni two sequence types</td>
<td>Drinking water 31 d</td>
<td>Significant reduction in phage contaminated control group, no significant reduction in experimental group</td>
<td>Kittler et al., 2013</td>
</tr>
</tbody>
</table>
incidence of phage resistance during phage application. Table 2 summarises studies on bacteriophage application and their effect on thermophilic Campylobacter.

Harvest mitigation strategies

Slaughtering and processing in abattoirs and meat plants is an important step of the poultry food chain, where extensive contamination with Campylobacter occurs. In broiler production, meat processing is a mostly automated process with inevitable faecal contamination of the meat including Campylobacter, which is part of the gut flora (Mead, 2004; Reich et al., 2008). In addition, the slaughterhouse provides possibilities of cross-contamination between flocks and carcasses, of different origin (Klein et al., 2007; Reich et al., 2008).

TABLE 3: Quantitative effect of different adjustable processing steps or decontamination treatments during broiler processing on Campylobacter

<table>
<thead>
<tr>
<th>Processing step</th>
<th>Sample</th>
<th>Intervention Measure</th>
<th>Campylobacter numbers</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalding and defeathering</td>
<td>Whole carcass</td>
<td>Prevention of defection by cloacal plugging</td>
<td>2.52 log_{10} cfu/ml</td>
<td>Musgrove et al., 1997</td>
</tr>
<tr>
<td>Scalding</td>
<td>Whole carcass</td>
<td>Scalding water temperature</td>
<td>4.5 log_{10} cfu/carcass</td>
<td>Lehner et al., 2014</td>
</tr>
<tr>
<td>Scalding</td>
<td>Neck skin</td>
<td>Scalding water temperature</td>
<td>3.32 log_{10} cfu/g</td>
<td>Wempe et al., 1983</td>
</tr>
<tr>
<td>Scalding</td>
<td>Chicken skin</td>
<td>Scalding water temperature</td>
<td>< 1 log_{10} reduction</td>
<td>Yang et al., 2001</td>
</tr>
<tr>
<td>Evisceration</td>
<td>Whole carcass</td>
<td>Effect of visceral rupture</td>
<td>Average increase by 0.9 log_{10} cfu/carcass</td>
<td>Boysen and Rosenquist, 2009</td>
</tr>
<tr>
<td>Washing</td>
<td>Carcass rinse</td>
<td>Inside outside washer (chlorinated 25 ppm)</td>
<td>4.69 log_{10} cfu/ml</td>
<td>Bashor et al., 2004</td>
</tr>
<tr>
<td>Washing</td>
<td>Carcass rinse</td>
<td>Inside outside washer (chlorinated 40 ppm)</td>
<td>1.93 log_{10} cfu/ml</td>
<td>Ferrang and Bailey, 2009</td>
</tr>
<tr>
<td>Experimental after evisceration before inside outside wash</td>
<td>Breast skin</td>
<td>Spraying 15 s/30 s PAA (400 ppm, pH 12.4)</td>
<td>0.85/> 1.28 log_{10} cfu/g</td>
<td>Purnell et al., 2014</td>
</tr>
<tr>
<td></td>
<td>Neck skin</td>
<td>Spraying 15 s/30 s ASC (1000 ppm, at pH 2.39–2.67)</td>
<td>> 1.45/> 1.6 log_{10} cfu/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breast skin</td>
<td>Spraying 15 s/30 s PAA (400 ppm, H2O2, 800 ppm acetic acid)</td>
<td>0.58/1.37 log_{10} cfu/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neck skin</td>
<td>Spraying 15 s/30 s PAA (400 ppm, H2O2, 800 ppm acetic acid)</td>
<td>0.13> 2.41 log_{10} cfu/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breast skin</td>
<td>Spraying 15 s/30 s H2O2 (800 ppm acetic acid)</td>
<td>0.81/> 1.15 log_{10} cfu/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neck skin</td>
<td>Spraying 15 s/30 s CD (6 ppm)</td>
<td>0.96/0.97 log_{10} cfu/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breast skin</td>
<td>Spraying 15 s/30 s Water only</td>
<td>0.03/ < 0.19 log_{10} cfu/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neck skin</td>
<td>Spraying 15 s/30 s Water only</td>
<td>0.23/0.40 log_{10} cfu/g</td>
<td></td>
</tr>
</tbody>
</table>

ASC: acidified sodium chlorite; TSP: trisodium phosphate; PAA: peroxycetic acid; CD: chlorine dioxide; % increase < LOD: the rate of samples with numbers below the limit of detection after treatment.

Logistic slaughtering

Considerations for possible reduction strategies at the slaughterhouse include efforts to minimize the entry of Campylobacter to the slaughterhouse or at least to prevent cross-contamination between proved negative flocks and proved positive Campylobacter status. This could be done by logistic slaughtering, where Campylobacter negative flocks are slaughtered at the beginning of each slaughter day. This would reduce both, the overall prevalence for Campylobacter of the produced broiler meat and prevent cross-contamination. Effects on quantitative contamination are limited, because cross-contaminations between flocks usually occur on a low quantitative level (Rosenquist et al., 2003; Reich et al., 2008; Sasaki et al., 2014). “Testing and scheduling” is an alternative to this, where flocks with high loads of Campylobacter in the gut are identified and could be excluded from the fresh meat market. A prerequisite for these strategies is a quick and reliable testing for Campylobacter at the end of the fattening period. In addition, “testing and scheduling” requires a confirmed correlation between Campylobacter carriage of broilers and the expected contamination levels on the meat (Nauta et al., 2009a, 2009b). Quantitative risk assessments evaluated the expected advantages of logistic slaughtering and found it to be limited. Reductions in prevalence of contaminated broilers showed linear relationship to the expected human cases. Quantitative reductions on the other hand, led to exponential changes in expected cases with already small reductions in numbers of Campylobacter on the meat. In this regard, quantitative reduction strategies seem to be more effective (Rosenquist et al., 2003; Lindqvist and Lindblad, 2008).

Slaughter technology

Measures for reduction of Campylobacter at the slaughterhouse itself could be set at points known to be critical for contamination of the meat. These are scalding and defeathering and evisceration with faecal contamination. At the
scalding step, changes in the water bath temperature are an option although product quality has to be considered here. Alterations of the product quality limit the increase of temperature, sensory changes become apparent already after slight temperature changes (Lehner et al., 2014). Washing steps either after defeathering, or at the end after evisceration allow for washing off of debris from the slaughtering process or faecal contamination. The results are depending on the conditions of washing steps and can improve the overall hygiene at the slaughterhouse (Bashor et al., 2004; Lehner et al., 2014). Avoiding faecal contamination is an important part in broiler processing and cloacal plugging was tested in its ability to avoid faecal leakage. Musgrove et al. (1997) found statistically significant lower Campylobacter counts on plugged broilers, but the procedure was too elaborate for commercial application. Tests with mechanically induced defaecation of slaughtered birds by Northcutt et al. (2008) before entry to the scald tank on the other hand did not result in reduced Campylobacter counts or indicator bacteria concentration on the broilers, while an effect was seen for Salmonella. In addition, the process would lead to reduced entry of faecal matter to the scald tank. Table 3 illustrates slaughter processing steps where adjustments can result in the improvement of the Campylobacter reducing effect.

Decontamination treatments

The strategies mentioned above mainly focus on good hygiene practice and proper application of HACCP systems in prevention of faecal contamination along the slaughter line. Direct decontamination treatments are possible too and can include addition of chemicals to the washing steps like detergents or chlorine formulations, for instance in the final inside outside wash (del Rio et al. 2007; Stopforth et al. 2007). At the moment, none such treatments are approved for application on European broiler meat production. But there has been an opinion by the EFSA biohazard panel (2005) on the evaluation of the safety of chlorine dioxide (CD), acidified sodium chlorite (ASC), trisodium phosphate (TSP) and peroxyacetic acid (PAA) in washing treatments for chickens at the slaughterhouse and no safety concerns were found, but data was too limited to confirm the effectiveness of treatments. Further EFSA opinions provided guidance on efficacy and for safety evaluations of chemical decontamination substances. It includes a guide for study design and data preparation. Additionally there are still considerations about possible environmental risks or risks of development of reduced sensitivity in target organisms that might occur and data is lacking (EFSA, 2010). An EFSA opinion (2012) was published on the application of Cecdure®, an aqueous solution of 1.0% of cetylpyridinium chloride and propylene glycol for poultry carcass dipping. The application seemed efficacious and safe for humans, but data on the environmental fate of the active substance was lacking and needs to be studied further (EFSA, 2012). Another EFSA opinion (2014b) focused on the evaluation of the safety and efficacy of peroxyacetic acid solutions. Efficacy was confirmed for indicator organisms and pathogens, but studies for the latter were limited. Risk evaluations mostly confirmed safety, but 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), which acts as product stabilizer, needs to be included in HACCP programs. Residues on carcasses need to be monitored. Additionally further studies are needed to assess resistance development in bacteria after treatment with PAA according to EFSA (2014b).

A recent evaluation by Purnell et al. (2014) for the effectiveness of decontamination additives in poultry meat production found the use of on-line sprays to be most promising and more favourable than dipping of carcasses. Exposure times tested were 15 s or 30 s and Campylobacter, Enterobacteriaceae and Pseudomonas spp. were enumerated on breast or neck skin. Significant reductions were found for all bacteria by ASC treatments for 15 s and 30 s. Trisodium phosphate was most effective in reducing numbers on neck skin after 30 s of application; effects were higher than for ASC. Overall, the reduction of Campylobacter after 30 s spray application was 1.37 and > 2.41 log10 cfu/g for TSP and >1.28 and > 1.60 log10 cfu/g for ASC on breast skin and neck skin, respectively. Chlorine dioxide was the least effective agent, probably because of concentration drop during spraying. Evaluation of treatment duration led to a significant benefit of the 30 s spray versus 15 s for TSP only (Purnell et al., 2014) (Tab. 3). Physical decontamination was tested with hot steam for 10 s or water wash (80°C) for 20 s followed by crust freezing, which led to Campylobacter reductions of ca. 3.2 and 2.9 log10 cfu/cm² of breast skin for steam and water, respectively. The steam treatment led to damage of the carcasses, so the hot water treatment was considered more useful, because the carcass appearance was acceptable by still achieving a similar decontamination effect (James et al., 2007). The application of ultrasound was tested by Haughton et al. (2012) on inoculated chicken skin treated for 16 minutes immersed in a sonication bath at two different intensities: high intensity (HI) at 20,000 W/L or low intensity (LI) with 20 W/L. Samples were initially inoculated with Campylobacter at ca. 5.0 log10 cfu/g. Application of HI sonication led to non-detectable Campylobacter counts, while LI sonication led to only minor reductions of less than one log10-unit, which was not significant. Musavian et al. (2014) tested the effectiveness of ultrasound (30–40 kHz) in combination with hot steam (90–94°C) on broiler carcasses online during regular slaughterhouse operations. Initial Campylobacter levels on breast skin were 2.35 log10 cfu/g and were reduced to 1.40 log10 cfu/g post treatment. In following trials an average reduction of 1 log10-unit was achieved with treatment times of 1.0–1.5 s. Sensory evaluation of broiler carcasses resulted in a fit for purchase rating.

Until now, the different chemical and physical decontamination treatments were mostly evaluated at model scale equipment, or online for a limited amount of time. Additional testing under field conditions is necessary to assess the Campylobacter reducing effects on a daily basis. In addition such measures should only be applied in combination with good hygiene practice and working HACCP concepts.

Conclusion

The main aim of food safety programs targeting food-borne Campylobacter infections must be the reduction of Campylobacter spp. in the final product. In case of broiler production this can only be achieved by applying mitigation strategies at both the pre- and harvest level. In primary production well established biosecurity measures are already in place but must be supplemented by more
advanced strategies like bacteriophage application or application of different organic acids or electrolyzed oxidizing water. These methods are still under development and only few real life field trials have shown their effectiveness in principal. The reduction must be further achieved by measures in the slaughterhouse, beginning with measures to prevent cross-contamination like logistic or scheduled slaughter. Process parameters must be proved for effectiveness concerning Campylobacter reduction. So far no single parameter can be recommended, as e.g. quality parameters are also affected. Therefore measures to reduce Campylobacter spp. in the food chain must be applied at primary production and must be accompanied by hygienic slaughter with improved process parameters, which still have to be developed.

Conflict of Interest

The authors declare that no competing interests exist.

References

EFSA (2005): Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on request from the commission related to treatment of poultry carcasses with chlorine dioxide, acidified sodium chloride, trisodium phosphates and peroxyacids. EFSA J 297: 1–27.

EFSA (2010): EFSA Panel on Biological Hazards (BIOHAZ) Guidance on revision of the joint AFC/BIOHAZ guidance document on the submission of data for the evaluation of the safety and efficacy of substances for the removal of microbial surface contamination of foods of animal origin intended for human consumption. EFSA J 8: 1544.

EFSA (2011): Scientific Opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA J 9: 2105.

EFSA (2012): EFSA Panel on Biological Hazards (BIOHAZ) and panel on food contact materials, enzymes, flavourings processing aids (CEF); scientific opinion on the evaluation of the safety and efficacy of Curex for the removal of microbial surface contamination of raw poultry products. EFSA J 10: 2612.

EFSA (2011): Scientific Opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA J 9: 2105.

EFSA (2012): EFSA Panel on Biological Hazards (BIOHAZ) and panel on food contact materials, enzymes, flavourings, processing aids (CEF); scientific opinion on the evaluation of the safety and efficacy of Curex for the removal of microbial surface contamination of raw poultry products. EFSA J 10: 2612.

Address for correspondence:
Univ.-Prof. Dr. Günter Klein
University of Veterinary Medicine Hannover
Institute of Food Quality and Food Safety
Bischofsholer Damm 15
30173 Hannover
Germany
guenter.klein@tiho-hannover.de